Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

نویسندگان

  • Manabu Shiraiwa
  • Lindsay D Yee
  • Katherine A Schilling
  • Christine L Loza
  • Jill S Craven
  • Andreas Zuend
  • Paul J Ziemann
  • John H Seinfeld
چکیده

Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction

This paper describes and evaluates a new framework for modeling kinetic gas-particle partitioning of secondary organic aerosol (SOA) that takes into account diffusion and chemical reaction within the particle phase. The framework uses a combination of (a) an analytical quasisteady-state treatment for the diffusion–reaction process within the particle phase for fast-reacting organic solutes, and...

متن کامل

Development and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas/particle partitioning associated with secondary organic aerosol formation

[1] A module for predicting the dynamic evolution of the gas phase species and the aerosol size and composition distribution during formation of secondary organic aerosol (SOA) is presented. The module is based on the inorganic gas-aerosol equilibrium model Simulating the Composition of Atmospheric Particles at Equilibrium 2 (SCAPE2) and updated versions of the lumped Caltech Atmospheric Chemis...

متن کامل

Development and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM

The aim of this work was to develop a model suited for detailed studies of aerosol dynamics, gas and particle phase chemistry within urban plumes, from local scale (1× 1 km2) to regional scale. This article describes and evaluates the trajectory model for Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer (ADCHEM). The model treats both vertical and horizontal dispersion ...

متن کامل

Multicomponent aerosol dynamics model UHMA: model development and validation

A size-segregated aerosol dynamics model UHMA (University of Helsinki Multicomponent Aerosol model) was developed for studies of multicomponent tropospheric aerosol particles. The model includes major aerosol microphysical processes in the atmosphere with a focus on new particle formation and growth; thus it incorporates particle coagulation and multicomponent condensation, applying a revised t...

متن کامل

Development and application of the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID)

[1] A new aerosol model, the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) has been developed to simulate atmospheric particulate matter (PM). MADRID and the Carnegie-Mellon University (CMU) bulk aqueous-phase chemistry have been incorporated into the three-dimensional Models-3/Community Multiscale Air Quality model (CMAQ). The resulting model, CMAQ-MADRID, is applie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 29  شماره 

صفحات  -

تاریخ انتشار 2013